Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы стереометрии»
Возрастная категория: 11 класс
00:00:00
Вопрос № 1.
Выберите верную формулу нахождения объёма шара.
\(V = \frac 13 \pi D^3\)
\(V = \frac 43 \pi D^3\)
\(V = \frac 46 \pi R^3\)
\(V = \frac 43 \pi R^3\)
Следующий
Вопрос № 2.
Продолжите определение: «Цилиндр, у которого образующие не перпендикулярны его основаниям, называется ___».
Неправильным
Прямым круговым
Наклонным
Косым
Следующий
Вопрос № 3.
Выберите верную формулу для нахождения диагонали куба.
\(d = a\sqrt 3\)
\(d = 2a\sqrt 3\)
\(d = 3a\sqrt 3\)
\(d = a\sqrt 2\)
Следующий
Вопрос № 4.
По какой формуле рассчитывается площадь поверхности сектора?
\(S = \pi R(2h + \sqrt {2hR + h^2})\)
\(S = \pi R(2h + \sqrt {hR - h^2})\)
\(S = \pi R(2h + \sqrt {2hR - h^2})\)
\(S = \pi R(2h + \sqrt {2hR - h})\)
Следующий
Вопрос № 5.
Выберите верное свойство конуса.
При вращении равнобедренного треугольника вокруг своей оси на \(360^\circ\) образуется прямой круговой конус
Все образующие прямого кругового конуса равны между собой
При вращении прямоугольного треугольника вокруг своего катета на \(180^\circ\) образуется прямой круговой конус
Центр тяжести любого конуса находится на одной третьей высоты от центра основания
Следующий
Вопрос № 6.
Выберите неверное свойство сферы.
Любое сечение сферы плоскостью является кругом
Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы
Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности
Все точки сферы одинаково удалены от центра
Следующий
Вопрос № 7.
Выберите верную формулу для нахождения площади боковой поверхности для правильной пирамиды.
\(S_{бок} = \frac 13 S_{осн} H\)
\(S_{бок} = \frac 12 pl\)
\(S_{бок} = \frac 13 pl\)
\(S_{бок} = \frac 12 S_{осн} H\)
Следующий
Вопрос № 8.
Выберите верную формулу для нахождения объёма пирамиды.
\(V = \frac 12 pl\)
\(V = \frac 12 S_{осн} H\)
\(V = \frac 13 pl\)
\(V = \frac 13 S_{осн} H\)
Следующий
Вопрос № 9.
Выберите верную формулу для нахождения площади поверхности цилиндра.
\(S = 2\pi rh\)
\(S = \pi r(h+r)\)
\(S = 2\pi r(h+r)\)
\(S = 2\pi r^2h\)
Следующий
Вопрос № 10.
Какой вид имеет уравнение прямого кругового конуса в декартовой системе координат?
\(\frac {x^2}{a^2} + \frac {y^2}{b^2} + \frac {z^2}{c^2} = 0\)
\(\frac {x^2}{a^2} + \frac {y^2}{a^2} - \frac {z^2}{c^2} = 0\)
\(\frac {x^2}{a^2} + \frac {y^2}{b^2} - \frac {z^2}{c^2} = 0\)
\(\frac {x^2}{a^2} + \frac {y^2}{a^2} + \frac {z^2}{c^2} = 0\)
Следующий
Вопрос № 11.
Что из перечисленного является телом вращения?
Все перечисленное
Шар
Конус
Цилиндр
Следующий
Вопрос № 12.
По какой формуле рассчитывается объём усеченного конуса?
\(V = \frac 13 (S_2 H - S_1 h)\)
\(V = \frac 12 H (S_2 - S_1)\)
\(V = \frac 12 (S_2 H - S_1 h)\)
\(V = \frac 13 H (S_2 - S_1)\)
1
2
3
4
5
6
7
8
9
10
11
12
Нужно ответить на все вопросы
Наверх