Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: педагоги
00:00:00
Вопрос № 1.
Выберите неверное свойство параллелограмма.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон
Сумма противоположных углов равна 180 градусов
Противоположные стороны параллелограмма равны
Все утверждения верны
Следующий
Вопрос № 2.
Выберите рисунок, на котором изображено свойство касательных.
Следующий
Вопрос № 3.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {b c \sin\alpha}2\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {ab}2\)
Следующий
Вопрос № 4.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = \frac r2\)
\(R = 2r\)
\(R = 3r\)
\(R = \frac r3\)
Следующий
Вопрос № 5.
Выберите верную формулу для нахождения площади кольца.
\(S = \pi (R^2 - r^2)\)
\(S = \pi (R - r)\)
\(S = (R^2 - r^2\)
\(S = \frac{\pi}2 (R^2 - r^2)\)
Следующий
Вопрос № 6.
Выберите верную формулировку теоремы косинусов.
\(a^2 = b^2 + c^2 - 2b \cos\beta\)
\(a^2 = b^2 + c^2 - ab \cos\alpha\)
\(a^2 = b^2 + c^2 - 2bc \cos\alpha\)
\(a^2 = b^2 + c^2 - 2ab \cos\alpha\)
Следующий
Вопрос № 7.
Выберите формулу, по которой можно найти радиус вписанной окружности для прямоугольного треугольника.
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a + b - c}2\)
Следующий
Вопрос № 8.
Выберите верное свойство медиан.
Все перечисленное
В точке пересечения медианы делятся в отношении 1:2, считая от вершины
Медианы делят треугольник на 6 треугольников равной площади
Все медианы пересекаются
Следующий
Вопрос № 9.
Выберите верную формулу для нахождения площади кругового сегмента.
\(S = \frac{R^2}{2}\)
\(S = \frac{R}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \cos\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \sin\alpha)\)
Следующий
Вопрос № 10.
Выберите верную формулу для нахождения длины окружности.
\(L = \pi R^2\)
\(L = 2\pi R^2\)
\(L = \pi R\)
\(L = 2\pi R\)
Следующий
Вопрос № 11.
Выберите неверный признак подобия треугольников.
Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.
Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.
Все признаки верные
Если две стороны одного треугольника пропорциональны двум сторонам другого, то треугольники подобны.
Следующий
Вопрос № 12.
Является ли равносторонний треугольник равнобедренным?
Нет
Да
Следующий
Вопрос № 13.
Можно ли посчитать число диагоналей произвольного многоугольника?
Да, по формуле \(N = \frac{n (n - 3)}3\)
Да, по формуле \(N = \frac{n (n - 3)}2\)
Нет
Следующий
Вопрос № 14.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\)?
Площадь параллелограмма
Площадь ромба и параллелограмма
Площадь ромба и квадрата
Площадь квадрата
Площадь произвольного четырехугольника
Следующий
Вопрос № 15.
Что находится в треугольнике по данной формуле: \(X = \frac 2a \sqrt{p(p-a)(p-b)(p-c)}\) ?
Биссектриса
Ничего из перечисленного
Высота
Медиана
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Нужно ответить на все вопросы
Наверх