Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: педагоги
00:00:00
Вопрос № 1.
Является ли равносторонний треугольник равнобедренным?
Нет
Да
Следующий
Вопрос № 2.
Выберите неверный признак подобия треугольников.
Все признаки верные
Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.
Если две стороны одного треугольника пропорциональны двум сторонам другого, то треугольники подобны.
Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.
Следующий
Вопрос № 3.
Выберите верную формулу нахождения радиуса вписанной в ромб окружности.
\(r = \frac {d_1d_2}{3a}\)
\(r = \frac {d_1d_2}{a}\)
\(r = \frac {d_1d_2}{2a}\)
\(r = \frac {d_1d_2}{4a}\)
Следующий
Вопрос № 4.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\sin\phi\) ?
Площадь параллелограмма
Площадь прямоугольника
Все перечисленное
Площадь ромба
Следующий
Вопрос № 5.
Выберите рисунок, на котором изображено свойство касательных.
Следующий
Вопрос № 6.
Выберите верную формулу для нахождения площади круга.
\(S = 2\pi R^2\)
\(S = \pi R\)
\(S = 2\pi R\)
\(S = \pi R^2\)
Следующий
Вопрос № 7.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
Только B
Только A
A и B
Только C
Следующий
Вопрос № 8.
Что потребуется для нахождения площади произвольного четырехугольника?
Длины двух смежных сторон
Длины диагоналий и угол можду ними
Смежные стороны и угол между ними
Длины всех сторон
Следующий
Вопрос № 9.
Можно ли посчитать число диагоналей произвольного многоугольника?
Да, по формуле \(N = \frac{n (n - 3)}3\)
Да, по формуле \(N = \frac{n (n - 3)}2\)
Нет
Следующий
Вопрос № 10.
Выберите верную формулу для нахождения длины окружности.
\(L = 2\pi R^2\)
\(L = 2\pi R\)
\(L = \pi R^2\)
\(L = \pi R\)
Следующий
Вопрос № 11.
Что можно вычислить, зная сторону равностороннего треугольника?
Площадь
Радиус вписанной окружности
Все перечисленное
Радиус описанной окружности
Следующий
Вопрос № 12.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = \frac r2\)
\(R = \frac r3\)
\(R = 2r\)
\(R = 3r\)
Следующий
Вопрос № 13.
Что такое средняя линия трапеции?
Отрезок, параллельный основаниям
Отрезок, соединяющий середины оснований
Отрезок, соединяющий середины боковых сторон
Отрезок, соединяющий середины противоположных сторон
Следующий
Вопрос № 14.
Выберите формулу, по которой можно найти радиус вписанной окружности для прямоугольного треугольника.
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {abc}{4S}\)
Следующий
Вопрос № 15.
Есть ли взаимосвязь между радиусом вписанной окружности r и площадью S произвольного треугольника?
\(S = rp\)
\(r = 2S\)
Нет зависимости
\(S = 2p\)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Нужно ответить на все вопросы
Наверх