Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: педагоги
00:00:00
Вопрос № 1.
Выберите верную формулу нахождения радиуса вписанной в ромб окружности.
\(r = \frac {d_1d_2}{4a}\)
\(r = \frac {d_1d_2}{2a}\)
\(r = \frac {d_1d_2}{3a}\)
\(r = \frac {d_1d_2}{a}\)
Следующий
Вопрос № 2.
Выберите верную формулу для нахождения длины дуги окружности.
\(L = \frac{\pi R \alpha}{360}\)
\(L = \frac{\pi R^2 \alpha}{180}\)
\(L = \frac{\pi R^2 \alpha}{360}\)
\(L = \frac{\pi R \alpha}{180}\)
Следующий
Вопрос № 3.
Что можно вычислить для прямоугольного треугольника, если известны гипотенуза и высота, проведенная к ней?
Площадь и радиус вписанной окружности
Только радиус описанной окружности
Только площадь
Только радиус вписанной окружности
Площадь и радиус описанной окружности
Следующий
Вопрос № 4.
Выберите рисунок, на котором изображено свойство касательных.
Следующий
Вопрос № 5.
Выберите неверный признак подобия треугольников.
Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.
Если две стороны одного треугольника пропорциональны двум сторонам другого, то треугольники подобны.
Все признаки верные
Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.
Следующий
Вопрос № 6.
Выберите верную формулу для нахождения длины окружности.
\(L = \pi R^2\)
\(L = 2\pi R^2\)
\(L = \pi R\)
\(L = 2\pi R\)
Следующий
Вопрос № 7.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
A и B
Только C
Только B
Только A
Следующий
Вопрос № 8.
Выберите верную формулировку свойства высот в треугольнике.
\(\frac {h_a}{a} = \frac {h_b}{b}\)
\(\frac {h_a}{h_b} = \frac {a}{b}\)
\(\frac {h_a}{b} = \frac {h_b}{a}\)
Следующий
Вопрос № 9.
По какой формуле можно вычислить площадь правильного многоугольника?
\(S = \frac n2 R^2 \sin{\frac{\pi}n}\)
\(S = (r^2 n) \text{ ctg }\pi\)
\(S = \frac n3 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = \frac n4 a^2 \text{ ctg }{\frac{\pi}n}\)
Следующий
Вопрос № 10.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\)?
Площадь ромба и параллелограмма
Площадь ромба и квадрата
Площадь квадрата
Площадь произвольного четырехугольника
Площадь параллелограмма
Следующий
Вопрос № 11.
Выберите верную формулу для нахождения площади кольца.
\(S = \pi (R^2 - r^2)\)
\(S = (R^2 - r^2\)
\(S = \frac{\pi}2 (R^2 - r^2)\)
\(S = \pi (R - r)\)
Следующий
Вопрос № 12.
Что находится в треугольнике по данной формуле: \(X = \frac 12 \sqrt{2(b^2 + c^2) - a^2}\) ?
Высота
Ничего из перечисленного
Биссектриса
Медиана
Следующий
Вопрос № 13.
Является ли равносторонний треугольник равнобедренным?
Нет
Да
Следующий
Вопрос № 14.
Что находит данная формула в треугольнике: \(a = c \sin\alpha = c \cos\beta = b \text{ tg }\alpha\) ?
Катет прямоугольного треугольника
Гипотенузу прямоугольного треугольника
Сторону произвольного треугольника
Сторону равнобедренного треугольника
Следующий
Вопрос № 15.
Выберите формулу, по которой можно найти радиус вписанной окружности для равностороннего треугольника.
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}2\)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Нужно ответить на все вопросы
Наверх