Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: педагоги
00:00:00
Вопрос № 1.
Что находится в треугольнике по данной формуле: \(X = \frac {\sqrt {cb(b + c + a)(b + c - a)}}{c + b}\) ?
Медиана
Высота
Ничего из перечисленного
Биссектриса
Следующий
Вопрос № 2.
Что находит данная формула в треугольнике: \(a = c \sin\alpha = c \cos\beta = b \text{ tg }\alpha\) ?
Гипотенузу прямоугольного треугольника
Сторону равнобедренного треугольника
Сторону произвольного треугольника
Катет прямоугольного треугольника
Следующий
Вопрос № 3.
Выберите формулу, по которой можно найти радиус вписанной окружности для произвольного треугольника.
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac Sp\)
Следующий
Вопрос № 4.
Выберите верную формулу нахождения радиуса вписанной в ромб окружности.
\(r = \frac {d_1d_2}{a}\)
\(r = \frac {d_1d_2}{4a}\)
\(r = \frac {d_1d_2}{3a}\)
\(r = \frac {d_1d_2}{2a}\)
Следующий
Вопрос № 5.
Выберите формулу, по которой можно найти радиус вписанной окружности для прямоугольного треугольника.
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a + b - c}2\)
Следующий
Вопрос № 6.
Выберите верное свойство медиан.
Все перечисленное
Все медианы пересекаются
Медианы делят треугольник на 6 треугольников равной площади
В точке пересечения медианы делятся в отношении 1:2, считая от вершины
Следующий
Вопрос № 7.
Выберите неверную формулировку свойства вписанных углов.
Вписанный угол равен угловой мере дуги, на которую он опирается
Все вписанные углы опирающиеся на общую дугу равны между собой
Величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу
Следующий
Вопрос № 8.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\)?
Площадь ромба и параллелограмма
Площадь произвольного четырехугольника
Площадь ромба и квадрата
Площадь параллелограмма
Площадь квадрата
Следующий
Вопрос № 9.
Выберите верную формулу для нахождения площади сектора.
\(S = \frac{\pi R^2 \alpha}{360}\)
\(S = \frac{\pi R \alpha}{180}\)
\(S = \frac{\pi R^2 \alpha}{180}\)
\(S = \frac{\pi R \alpha}{360}\)
Следующий
Вопрос № 10.
Выберите неверное свойство параллелограмма.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон
Сумма противоположных углов равна 180 градусов
Противоположные стороны параллелограмма равны
Все утверждения верны
Следующий
Вопрос № 11.
Можно ли посчитать число диагоналей произвольного многоугольника?
Да, по формуле \(N = \frac{n (n - 3)}3\)
Нет
Да, по формуле \(N = \frac{n (n - 3)}2\)
Следующий
Вопрос № 12.
Является ли равносторонний треугольник равнобедренным?
Нет
Да
Следующий
Вопрос № 13.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\sin\phi\) ?
Все перечисленное
Площадь ромба
Площадь параллелограмма
Площадь прямоугольника
Следующий
Вопрос № 14.
Выберите верную формулировку теоремы синусов.
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} + \frac {b}{\sin\beta} + \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma}\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2r\)
Следующий
Вопрос № 15.
Что потребуется для нахождения площади произвольного четырехугольника?
Длины всех сторон
Смежные стороны и угол между ними
Длины двух смежных сторон
Длины диагоналий и угол можду ними
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Нужно ответить на все вопросы
Наверх