Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: педагоги
00:00:00
Вопрос № 1.
Какая формула используется только для нахождения площади равностороннего треугольника?
\(S = \frac {ab}2\)
\(S = \frac {a^2\sqrt{3}}3\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
Следующий
Вопрос № 2.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \frac {ab}2\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {b c \sin\alpha}2\)
Следующий
Вопрос № 3.
Выберите рисунок, на котором изображено свойство касательных.
Следующий
Вопрос № 4.
Выберите формулу, по которой можно найти радиус вписанной окружности для произвольного треугольника.
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac Sp\)
Следующий
Вопрос № 5.
Что находится в треугольнике по данной формуле: \(X = \frac 2a \sqrt{p(p-a)(p-b)(p-c)}\) ?
Биссектриса
Высота
Медиана
Ничего из перечисленного
Следующий
Вопрос № 6.
При каком условии возможно описать окружность вокруг четырёхугольника?
\(a + b = c + d\)
\(\alpha + \gamma = \beta + \phi = 180^\circ\)
\(\alpha + \beta = \gamma + \phi = 180^\circ\)
\(a + c = b + d\)
Следующий
Вопрос № 7.
Выберите верную формулу для нахождения площади сектора.
\(S = \frac{\pi R^2 \alpha}{180}\)
\(S = \frac{\pi R \alpha}{180}\)
\(S = \frac{\pi R \alpha}{360}\)
\(S = \frac{\pi R^2 \alpha}{360}\)
Следующий
Вопрос № 8.
В каком треугольнике точка пересечения высот находится внутри треугольника?
В тупоугольном
В остроугольном
В произвольном
В прямом
Следующий
Вопрос № 9.
Является ли равносторонний треугольник равнобедренным?
Да
Нет
Следующий
Вопрос № 10.
Что можно вычислить для прямоугольного треугольника, если известны гипотенуза и высота, проведенная к ней?
Площадь и радиус описанной окружности
Площадь и радиус вписанной окружности
Только площадь
Только радиус вписанной окружности
Только радиус описанной окружности
Следующий
Вопрос № 11.
Выберите верную формулировку теоремы синусов.
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} + \frac {b}{\sin\beta} + \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma}\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2r\)
Следующий
Вопрос № 12.
Выберите верную формулу для нахождения площади кругового сегмента.
\(S = \frac{R^2}{2}(\alpha - \cos\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R^2}{2}\)
Следующий
Вопрос № 13.
Можно ли посчитать число диагоналей произвольного многоугольника?
Нет
Да, по формуле \(N = \frac{n (n - 3)}2\)
Да, по формуле \(N = \frac{n (n - 3)}3\)
Следующий
Вопрос № 14.
По какой формуле можно вычислить площадь правильного многоугольника?
\(S = (r^2 n) \text{ ctg }\pi\)
\(S = \frac n3 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = \frac n2 R^2 \sin{\frac{\pi}n}\)
\(S = \frac n4 a^2 \text{ ctg }{\frac{\pi}n}\)
Следующий
Вопрос № 15.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = 3r\)
\(R = \frac r3\)
\(R = \frac r2\)
\(R = 2r\)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Нужно ответить на все вопросы
Наверх