Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: педагоги
00:00:00
Вопрос № 1.
Выберите неверную формулировку свойства вписанных углов.
Величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу
Вписанный угол равен угловой мере дуги, на которую он опирается
Все вписанные углы опирающиеся на общую дугу равны между собой
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу
Следующий
Вопрос № 2.
Что потребуется для нахождения площади произвольного четырехугольника?
Длины всех сторон
Смежные стороны и угол между ними
Длины двух смежных сторон
Длины диагоналий и угол можду ними
Следующий
Вопрос № 3.
Есть ли взаимосвязь между радиусом вписанной окружности r и площадью S произвольного треугольника?
\(S = 2p\)
\(r = 2S\)
Нет зависимости
\(S = rp\)
Следующий
Вопрос № 4.
Что находит данная формула в треугольнике: \(a = c \sin\alpha = c \cos\beta = b \text{ tg }\alpha\) ?
Катет прямоугольного треугольника
Сторону произвольного треугольника
Гипотенузу прямоугольного треугольника
Сторону равнобедренного треугольника
Следующий
Вопрос № 5.
Выберите верную формулу для нахождения площади кольца.
\(S = \pi (R - r)\)
\(S = \pi (R^2 - r^2)\)
\(S = (R^2 - r^2\)
\(S = \frac{\pi}2 (R^2 - r^2)\)
Следующий
Вопрос № 6.
Что находится в треугольнике по данной формуле: \(X = \frac {\sqrt {cb(b + c + a)(b + c - a)}}{c + b}\) ?
Высота
Ничего из перечисленного
Биссектриса
Медиана
Следующий
Вопрос № 7.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
Только A
A и B
Только C
Только B
Следующий
Вопрос № 8.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\sin\phi\) ?
Площадь параллелограмма
Площадь ромба
Все перечисленное
Площадь прямоугольника
Следующий
Вопрос № 9.
Выберите верную формулировку теоремы синусов.
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2r\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma}\)
\(\frac {a}{\sin\alpha} + \frac {b}{\sin\beta} + \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2R\)
Следующий
Вопрос № 10.
Выберите неверный признак подобия треугольников.
Если две стороны одного треугольника пропорциональны двум сторонам другого, то треугольники подобны.
Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.
Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.
Все признаки верные
Следующий
Вопрос № 11.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {ab}2\)
\(S = \frac {b c \sin\alpha}2\)
Следующий
Вопрос № 12.
Выберите формулу, по которой можно найти радиус вписанной окружности для прямоугольного треугольника.
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}6\)
Следующий
Вопрос № 13.
Выберите верную формулу нахождения радиуса вписанной в ромб окружности.
\(r = \frac {d_1d_2}{a}\)
\(r = \frac {d_1d_2}{2a}\)
\(r = \frac {d_1d_2}{4a}\)
\(r = \frac {d_1d_2}{3a}\)
Следующий
Вопрос № 14.
Выберите неверное свойство параллелограмма.
Противоположные стороны параллелограмма равны
Сумма противоположных углов равна 180 градусов
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон
Все утверждения верны
Следующий
Вопрос № 15.
Выберите верную формулу для нахождения площади кругового сегмента.
\(S = \frac{R^2}{2}\)
\(S = \frac{R^2}{2}(\alpha - \cos\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R}{2}(\alpha - \sin\alpha)\)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Нужно ответить на все вопросы
Наверх