Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: студенты
00:00:00
Вопрос № 1.
Выберите верную формулу для нахождения площади кольца.
\(S = \pi (R - r)\)
\(S = (R^2 - r^2\)
\(S = \pi (R^2 - r^2)\)
\(S = \frac{\pi}2 (R^2 - r^2)\)
Следующий
Вопрос № 2.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = \frac r3\)
\(R = 3r\)
\(R = 2r\)
\(R = \frac r2\)
Следующий
Вопрос № 3.
Выберите верную формулу для нахождения длины дуги окружности.
\(L = \frac{\pi R \alpha}{360}\)
\(L = \frac{\pi R^2 \alpha}{360}\)
\(L = \frac{\pi R^2 \alpha}{180}\)
\(L = \frac{\pi R \alpha}{180}\)
Следующий
Вопрос № 4.
Выберите неверную формулировку свойства вписанных углов.
Вписанный угол равен угловой мере дуги, на которую он опирается
Величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу
Все вписанные углы опирающиеся на общую дугу равны между собой
Следующий
Вопрос № 5.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\sin\phi\) ?
Площадь прямоугольника
Площадь ромба
Площадь параллелограмма
Все перечисленное
Следующий
Вопрос № 6.
Выберите формулу, по которой можно найти радиус вписанной окружности для произвольного треугольника.
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a + b - c}2\)
\(r = \frac Sp\)
Следующий
Вопрос № 7.
Выберите верную формулировку теоремы синусов.
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2r\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma}\)
\(\frac {a}{\sin\alpha} + \frac {b}{\sin\beta} + \frac {c}{\sin\gamma} = 2R\)
Следующий
Вопрос № 8.
Выберите формулу, по которой можно найти радиус вписанной окружности для прямоугольного треугольника.
\(r = \frac {a + b - c}2\)
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a\sqrt{3}}2\)
Следующий
Вопрос № 9.
Выберите верную формулу нахождения радиуса вписанной в ромб окружности.
\(r = \frac {d_1d_2}{3a}\)
\(r = \frac {d_1d_2}{a}\)
\(r = \frac {d_1d_2}{2a}\)
\(r = \frac {d_1d_2}{4a}\)
Следующий
Вопрос № 10.
По какой формуле можно вычислить площадь правильного многоугольника?
\(S = \frac n4 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = \frac n2 R^2 \sin{\frac{\pi}n}\)
\(S = \frac n3 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = (r^2 n) \text{ ctg }\pi\)
Следующий
Вопрос № 11.
Что находится в треугольнике по данной формуле: \(X = \frac 12 \sqrt{2(b^2 + c^2) - a^2}\) ?
Высота
Ничего из перечисленного
Медиана
Биссектриса
Следующий
Вопрос № 12.
Выберите верную формулировку теоремы косинусов.
\(a^2 = b^2 + c^2 - ab \cos\alpha\)
\(a^2 = b^2 + c^2 - 2b \cos\beta\)
\(a^2 = b^2 + c^2 - 2bc \cos\alpha\)
\(a^2 = b^2 + c^2 - 2ab \cos\alpha\)
Следующий
Вопрос № 13.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
Только C
Только B
A и B
Только A
Следующий
Вопрос № 14.
Что находит данная формула в треугольнике: \(a = c \sin\alpha = c \cos\beta = b \text{ tg }\alpha\) ?
Гипотенузу прямоугольного треугольника
Сторону равнобедренного треугольника
Сторону произвольного треугольника
Катет прямоугольного треугольника
Следующий
Вопрос № 15.
Выберите верную формулу для нахождения площади кругового сегмента.
\(S = \frac{R}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R^2}{2}\)
\(S = \frac{R^2}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \cos\alpha)\)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Нужно ответить на все вопросы
Наверх