Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 11 класс
00:00:00
Вопрос № 1.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {ab}2\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {b c \sin\alpha}2\)
Следующий
Вопрос № 2.
Выберите верное свойство медиан.
В точке пересечения медианы делятся в отношении 1:2, считая от вершины
Все медианы пересекаются
Все перечисленное
Медианы делят треугольник на 6 треугольников равной площади
Следующий
Вопрос № 3.
Выберите верную формулу для нахождения площади кругового сегмента.
\(S = \frac{R}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \cos\alpha)\)
\(S = \frac{R^2}{2}\)
\(S = \frac{R^2}{2}(\alpha - \sin\alpha)\)
Следующий
Вопрос № 4.
Какая формула используется только для нахождения площади равностороннего треугольника?
\(S = \frac {ab}2\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {a^2\sqrt{3}}3\)
Следующий
Вопрос № 5.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\sin\phi\) ?
Площадь ромба
Все перечисленное
Площадь параллелограмма
Площадь прямоугольника
Следующий
Вопрос № 6.
Выберите верную формулу для нахождения площади сектора.
\(S = \frac{\pi R \alpha}{180}\)
\(S = \frac{\pi R^2 \alpha}{360}\)
\(S = \frac{\pi R \alpha}{360}\)
\(S = \frac{\pi R^2 \alpha}{180}\)
Следующий
Вопрос № 7.
Выберите формулу, по которой можно найти радиус вписанной окружности для прямоугольного треугольника.
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a + b - c}2\)
Следующий
Вопрос № 8.
Есть ли взаимосвязь между радиусом вписанной окружности r и площадью S произвольного треугольника?
\(r = 2S\)
Нет зависимости
\(S = rp\)
\(S = 2p\)
Следующий
Вопрос № 9.
Можно ли посчитать число диагоналей произвольного многоугольника?
Да, по формуле \(N = \frac{n (n - 3)}3\)
Да, по формуле \(N = \frac{n (n - 3)}2\)
Нет
Следующий
Вопрос № 10.
Что потребуется для нахождения площади произвольного четырехугольника?
Длины двух смежных сторон
Длины диагоналий и угол можду ними
Длины всех сторон
Смежные стороны и угол между ними
Следующий
Вопрос № 11.
Выберите верную формулу для нахождения длины дуги окружности.
\(L = \frac{\pi R^2 \alpha}{360}\)
\(L = \frac{\pi R \alpha}{180}\)
\(L = \frac{\pi R^2 \alpha}{180}\)
\(L = \frac{\pi R \alpha}{360}\)
Следующий
Вопрос № 12.
В каком треугольнике точка пересечения высот находится внутри треугольника?
В произвольном
В остроугольном
В тупоугольном
В прямом
1
2
3
4
5
6
7
8
9
10
11
12
Нужно ответить на все вопросы
Наверх