Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 11 класс
00:00:00
Вопрос № 1.
Что можно вычислить, зная сторону равностороннего треугольника?
Радиус описанной окружности
Все перечисленное
Площадь
Радиус вписанной окружности
Следующий
Вопрос № 2.
Можно ли посчитать число диагоналей произвольного многоугольника?
Да, по формуле \(N = \frac{n (n - 3)}2\)
Да, по формуле \(N = \frac{n (n - 3)}3\)
Нет
Следующий
Вопрос № 3.
Выберите неверный признак подобия треугольников.
Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.
Все признаки верные
Если две стороны одного треугольника пропорциональны двум сторонам другого, то треугольники подобны.
Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.
Следующий
Вопрос № 4.
Выберите верную формулировку свойства высот в треугольнике.
\(\frac {h_a}{b} = \frac {h_b}{a}\)
\(\frac {h_a}{a} = \frac {h_b}{b}\)
\(\frac {h_a}{h_b} = \frac {a}{b}\)
Следующий
Вопрос № 5.
Выберите верную формулировку теоремы косинусов.
\(a^2 = b^2 + c^2 - ab \cos\alpha\)
\(a^2 = b^2 + c^2 - 2bc \cos\alpha\)
\(a^2 = b^2 + c^2 - 2b \cos\beta\)
\(a^2 = b^2 + c^2 - 2ab \cos\alpha\)
Следующий
Вопрос № 6.
Что потребуется для нахождения площади произвольного четырехугольника?
Длины всех сторон
Смежные стороны и угол между ними
Длины диагоналий и угол можду ними
Длины двух смежных сторон
Следующий
Вопрос № 7.
Выберите верное свойство медиан.
В точке пересечения медианы делятся в отношении 1:2, считая от вершины
Медианы делят треугольник на 6 треугольников равной площади
Все медианы пересекаются
Все перечисленное
Следующий
Вопрос № 8.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {ab}2\)
\(S = \frac {b c \sin\alpha}2\)
\(S = \frac {a^2\sqrt{3}}4\)
Следующий
Вопрос № 9.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\sin\phi\) ?
Площадь параллелограмма
Все перечисленное
Площадь ромба
Площадь прямоугольника
Следующий
Вопрос № 10.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = \frac r2\)
\(R = \frac r3\)
\(R = 3r\)
\(R = 2r\)
Следующий
Вопрос № 11.
Что находится в треугольнике по данной формуле: \(X = \frac {\sqrt {cb(b + c + a)(b + c - a)}}{c + b}\) ?
Ничего из перечисленного
Высота
Медиана
Биссектриса
Следующий
Вопрос № 12.
Выберите верную формулу для нахождения длины дуги окружности.
\(L = \frac{\pi R \alpha}{360}\)
\(L = \frac{\pi R^2 \alpha}{180}\)
\(L = \frac{\pi R \alpha}{180}\)
\(L = \frac{\pi R^2 \alpha}{360}\)
1
2
3
4
5
6
7
8
9
10
11
12
Нужно ответить на все вопросы
Наверх