Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 11 класс
00:00:00
Вопрос № 1.
Выберите неверное свойство параллелограмма.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон
Все утверждения верны
Сумма противоположных углов равна 180 градусов
Противоположные стороны параллелограмма равны
Следующий
Вопрос № 2.
Есть ли взаимосвязь между радиусом вписанной окружности r и площадью S произвольного треугольника?
\(r = 2S\)
Нет зависимости
\(S = rp\)
\(S = 2p\)
Следующий
Вопрос № 3.
Выберите верную формулу для нахождения длины окружности.
\(L = \pi R^2\)
\(L = 2\pi R^2\)
\(L = \pi R\)
\(L = 2\pi R\)
Следующий
Вопрос № 4.
Выберите верную формулу нахождения радиуса вписанной в ромб окружности.
\(r = \frac {d_1d_2}{a}\)
\(r = \frac {d_1d_2}{3a}\)
\(r = \frac {d_1d_2}{2a}\)
\(r = \frac {d_1d_2}{4a}\)
Следующий
Вопрос № 5.
Выберите верную формулу для нахождения площади кольца.
\(S = \frac{\pi}2 (R^2 - r^2)\)
\(S = \pi (R - r)\)
\(S = \pi (R^2 - r^2)\)
\(S = (R^2 - r^2\)
Следующий
Вопрос № 6.
Что находит данная формула в треугольнике: \(a = c \sin\alpha = c \cos\beta = b \text{ tg }\alpha\) ?
Катет прямоугольного треугольника
Сторону произвольного треугольника
Гипотенузу прямоугольного треугольника
Сторону равнобедренного треугольника
Следующий
Вопрос № 7.
Что такое средняя линия трапеции?
Отрезок, параллельный основаниям
Отрезок, соединяющий середины боковых сторон
Отрезок, соединяющий середины противоположных сторон
Отрезок, соединяющий середины оснований
Следующий
Вопрос № 8.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = \frac r3\)
\(R = 3r\)
\(R = 2r\)
\(R = \frac r2\)
Следующий
Вопрос № 9.
Выберите верную формулировку теоремы косинусов.
\(a^2 = b^2 + c^2 - ab \cos\alpha\)
\(a^2 = b^2 + c^2 - 2bc \cos\alpha\)
\(a^2 = b^2 + c^2 - 2b \cos\beta\)
\(a^2 = b^2 + c^2 - 2ab \cos\alpha\)
Следующий
Вопрос № 10.
Что можно вычислить для прямоугольного треугольника, если известны гипотенуза и высота, проведенная к ней?
Только радиус вписанной окружности
Площадь и радиус описанной окружности
Площадь и радиус вписанной окружности
Только площадь
Только радиус описанной окружности
Следующий
Вопрос № 11.
Выберите формулу, по которой можно найти радиус вписанной окружности для прямоугольного треугольника.
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {abc}{4S}\)
\(r = \frac {a + b - c}2\)
Следующий
Вопрос № 12.
При каком условии возможно описать окружность вокруг четырёхугольника?
\(a + b = c + d\)
\(\alpha + \gamma = \beta + \phi = 180^\circ\)
\(a + c = b + d\)
\(\alpha + \beta = \gamma + \phi = 180^\circ\)
1
2
3
4
5
6
7
8
9
10
11
12
Нужно ответить на все вопросы
Наверх