Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 11 класс
00:00:00
Вопрос № 1.
Выберите верную формулу для нахождения длины дуги окружности.
\(L = \frac{\pi R \alpha}{180}\)
\(L = \frac{\pi R^2 \alpha}{180}\)
\(L = \frac{\pi R \alpha}{360}\)
\(L = \frac{\pi R^2 \alpha}{360}\)
Следующий
Вопрос № 2.
Что находится в треугольнике по данной формуле: \(X = \frac 12 \sqrt{2(b^2 + c^2) - a^2}\) ?
Ничего из перечисленного
Биссектриса
Медиана
Высота
Следующий
Вопрос № 3.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
Только B
A и B
Только C
Только A
Следующий
Вопрос № 4.
Выберите неверную формулировку свойства вписанных углов.
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу
Вписанный угол равен угловой мере дуги, на которую он опирается
Все вписанные углы опирающиеся на общую дугу равны между собой
Величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу
Следующий
Вопрос № 5.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\sin\phi\) ?
Площадь ромба
Площадь параллелограмма
Все перечисленное
Площадь прямоугольника
Следующий
Вопрос № 6.
Можно ли посчитать число диагоналей произвольного многоугольника?
Да, по формуле \(N = \frac{n (n - 3)}3\)
Нет
Да, по формуле \(N = \frac{n (n - 3)}2\)
Следующий
Вопрос № 7.
Выберите верную формулировку свойства высот в треугольнике.
\(\frac {h_a}{b} = \frac {h_b}{a}\)
\(\frac {h_a}{h_b} = \frac {a}{b}\)
\(\frac {h_a}{a} = \frac {h_b}{b}\)
Следующий
Вопрос № 8.
Что находит данная формула в треугольнике: \(a = c \sin\alpha = c \cos\beta = b \text{ tg }\alpha\) ?
Катет прямоугольного треугольника
Гипотенузу прямоугольного треугольника
Сторону равнобедренного треугольника
Сторону произвольного треугольника
Следующий
Вопрос № 9.
Что такое средняя линия трапеции?
Отрезок, параллельный основаниям
Отрезок, соединяющий середины оснований
Отрезок, соединяющий середины противоположных сторон
Отрезок, соединяющий середины боковых сторон
Следующий
Вопрос № 10.
Выберите верную формулу для нахождения площади кольца.
\(S = \pi (R - r)\)
\(S = \pi (R^2 - r^2)\)
\(S = (R^2 - r^2\)
\(S = \frac{\pi}2 (R^2 - r^2)\)
Следующий
Вопрос № 11.
Выберите рисунок, на котором изображено свойство касательных.
Следующий
Вопрос № 12.
Выберите верную формулу для нахождения площади сектора.
\(S = \frac{\pi R \alpha}{360}\)
\(S = \frac{\pi R \alpha}{180}\)
\(S = \frac{\pi R^2 \alpha}{360}\)
\(S = \frac{\pi R^2 \alpha}{180}\)
1
2
3
4
5
6
7
8
9
10
11
12
Нужно ответить на все вопросы
Наверх