Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 10 класс
00:00:00
Вопрос № 1.
Выберите формулу, по которой можно найти радиус вписанной окружности для прямоугольного треугольника.
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a + b - c}2\)
\(r = \frac {abc}{4S}\)
Следующий
Вопрос № 2.
Что находится в треугольнике по данной формуле: \(X = \frac 12 \sqrt{2(b^2 + c^2) - a^2}\) ?
Медиана
Биссектриса
Высота
Ничего из перечисленного
Следующий
Вопрос № 3.
Выберите формулу, по которой можно найти радиус вписанной окружности для произвольного треугольника.
\(r = \frac Sp\)
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a\sqrt{3}}2\)
Следующий
Вопрос № 4.
Выберите верную формулу для нахождения площади круга.
\(S = \pi R^2\)
\(S = 2\pi R^2\)
\(S = 2\pi R\)
\(S = \pi R\)
Следующий
Вопрос № 5.
Является ли равносторонний треугольник равнобедренным?
Да
Нет
Следующий
Вопрос № 6.
Что находится в треугольнике по данной формуле: \(X = \frac 2a \sqrt{p(p-a)(p-b)(p-c)}\) ?
Медиана
Высота
Ничего из перечисленного
Биссектриса
Следующий
Вопрос № 7.
Выберите верное свойство медиан.
Все медианы пересекаются
Медианы делят треугольник на 6 треугольников равной площади
Все перечисленное
В точке пересечения медианы делятся в отношении 1:2, считая от вершины
Следующий
Вопрос № 8.
Что можно вычислить для прямоугольного треугольника, если известны гипотенуза и высота, проведенная к ней?
Только площадь
Только радиус описанной окружности
Только радиус вписанной окружности
Площадь и радиус вписанной окружности
Площадь и радиус описанной окружности
Следующий
Вопрос № 9.
Выберите верную формулу для нахождения площади сектора.
\(S = \frac{\pi R^2 \alpha}{360}\)
\(S = \frac{\pi R \alpha}{360}\)
\(S = \frac{\pi R \alpha}{180}\)
\(S = \frac{\pi R^2 \alpha}{180}\)
Следующий
Вопрос № 10.
Выберите неверную формулировку свойства вписанных углов.
Вписанный угол равен угловой мере дуги, на которую он опирается
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу
Все вписанные углы опирающиеся на общую дугу равны между собой
Величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу
Следующий
Вопрос № 11.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
A и B
Только C
Только B
Только A
Следующий
Вопрос № 12.
Что можно вычислить, зная сторону равностороннего треугольника?
Площадь
Все перечисленное
Радиус вписанной окружности
Радиус описанной окружности
1
2
3
4
5
6
7
8
9
10
11
12
Нужно ответить на все вопросы
Наверх