Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 8 класс
00:00:00
Вопрос № 1.
Выберите неверную формулировку свойства вписанных углов.
Все вписанные углы опирающиеся на общую дугу равны между собой
Вписанный угол равен угловой мере дуги, на которую он опирается
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу
Величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу
Следующий
Вопрос № 2.
Выберите верную формулу для нахождения длины дуги окружности.
\(L = \frac{\pi R \alpha}{360}\)
\(L = \frac{\pi R^2 \alpha}{360}\)
\(L = \frac{\pi R^2 \alpha}{180}\)
\(L = \frac{\pi R \alpha}{180}\)
Следующий
Вопрос № 3.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
A и B
Только B
Только C
Только A
Следующий
Вопрос № 4.
Что можно найти по данной формуле: \(S = ah_a\)?
Площадь произвольного четырехугольника
Площадь ромба и параллелограмма
Площадь ромба
Площадь параллелограмма
Следующий
Вопрос № 5.
Выберите верную формулировку теоремы синусов.
\(\frac {a}{\sin\alpha} + \frac {b}{\sin\beta} + \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma}\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2r\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2R\)
Следующий
Вопрос № 6.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {ab}2\)
\(S = \frac {b c \sin\alpha}2\)
Следующий
Вопрос № 7.
Что можно вычислить, зная сторону равностороннего треугольника?
Радиус вписанной окружности
Площадь
Все перечисленное
Радиус описанной окружности
Следующий
Вопрос № 8.
Какая формула используется только для нахождения площади равностороннего треугольника?
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {a^2\sqrt{3}}3\)
\(S = \frac {ab}2\)
Следующий
Вопрос № 9.
При каком условии возможно описать окружность вокруг четырёхугольника?
\(\alpha + \gamma = \beta + \phi = 180^\circ\)
\(a + c = b + d\)
\(\alpha + \beta = \gamma + \phi = 180^\circ\)
\(a + b = c + d\)
Следующий
Вопрос № 10.
Выберите формулу, по которой можно найти радиус вписанной окружности для равностороннего треугольника.
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {abc}{4S}\)
1
2
3
4
5
6
7
8
9
10
Нужно ответить на все вопросы
Наверх