Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 8 класс
00:00:00
Вопрос № 1.
Выберите формулу, по которой можно найти радиус вписанной окружности для равностороннего треугольника.
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {abc}{4S}\)
Следующий
Вопрос № 2.
Какая формула используется только для нахождения площади равностороннего треугольника?
\(S = \frac {a^2\sqrt{3}}3\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {ab}2\)
Следующий
Вопрос № 3.
Выберите верную формулу для нахождения площади сектора.
\(S = \frac{\pi R^2 \alpha}{360}\)
\(S = \frac{\pi R \alpha}{180}\)
\(S = \frac{\pi R^2 \alpha}{180}\)
\(S = \frac{\pi R \alpha}{360}\)
Следующий
Вопрос № 4.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {b c \sin\alpha}2\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {ab}2\)
Следующий
Вопрос № 5.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\)?
Площадь ромба и параллелограмма
Площадь параллелограмма
Площадь ромба и квадрата
Площадь произвольного четырехугольника
Площадь квадрата
Следующий
Вопрос № 6.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\sin\phi\) ?
Площадь параллелограмма
Площадь прямоугольника
Все перечисленное
Площадь ромба
Следующий
Вопрос № 7.
Выберите верную формулировку теоремы синусов.
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma}\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2r\)
\(\frac {a}{\sin\alpha} + \frac {b}{\sin\beta} + \frac {c}{\sin\gamma} = 2R\)
Следующий
Вопрос № 8.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
Только B
Только C
Только A
A и B
Следующий
Вопрос № 9.
Что находится в треугольнике по данной формуле: \(X = \frac 12 \sqrt{2(b^2 + c^2) - a^2}\) ?
Высота
Биссектриса
Медиана
Ничего из перечисленного
Следующий
Вопрос № 10.
Выберите формулу, по которой можно найти радиус вписанной окружности для произвольного треугольника.
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac Sp\)
\(r = \frac {a + b - c}2\)
1
2
3
4
5
6
7
8
9
10
Нужно ответить на все вопросы
Наверх