Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 8 класс
00:00:00
Вопрос № 1.
Выберите формулу, по которой можно найти радиус вписанной окружности для равностороннего треугольника.
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a + b - c}2\)
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}6\)
Следующий
Вопрос № 2.
Что находится в треугольнике по данной формуле: \(X = \frac 2a \sqrt{p(p-a)(p-b)(p-c)}\) ?
Ничего из перечисленного
Медиана
Высота
Биссектриса
Следующий
Вопрос № 3.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\)?
Площадь ромба и параллелограмма
Площадь параллелограмма
Площадь произвольного четырехугольника
Площадь квадрата
Площадь ромба и квадрата
Следующий
Вопрос № 4.
Выберите верную формулу для нахождения площади кругового сегмента.
\(S = \frac{R^2}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \cos\alpha)\)
\(S = \frac{R^2}{2}\)
\(S = \frac{R}{2}(\alpha - \sin\alpha)\)
Следующий
Вопрос № 5.
Выберите верную формулу для нахождения площади сектора.
\(S = \frac{\pi R^2 \alpha}{360}\)
\(S = \frac{\pi R \alpha}{180}\)
\(S = \frac{\pi R^2 \alpha}{180}\)
\(S = \frac{\pi R \alpha}{360}\)
Следующий
Вопрос № 6.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
Только B
Только C
A и B
Только A
Следующий
Вопрос № 7.
Выберите верную формулировку теоремы косинусов.
\(a^2 = b^2 + c^2 - 2ab \cos\alpha\)
\(a^2 = b^2 + c^2 - 2b \cos\beta\)
\(a^2 = b^2 + c^2 - ab \cos\alpha\)
\(a^2 = b^2 + c^2 - 2bc \cos\alpha\)
Следующий
Вопрос № 8.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \frac {ab}2\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {b c \sin\alpha}2\)
Следующий
Вопрос № 9.
Выберите верную формулу нахождения радиуса вписанной в ромб окружности.
\(r = \frac {d_1d_2}{a}\)
\(r = \frac {d_1d_2}{2a}\)
\(r = \frac {d_1d_2}{3a}\)
\(r = \frac {d_1d_2}{4a}\)
Следующий
Вопрос № 10.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = \frac r2\)
\(R = \frac r3\)
\(R = 2r\)
\(R = 3r\)
1
2
3
4
5
6
7
8
9
10
Нужно ответить на все вопросы
Наверх