Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 7 класс
00:00:00
Вопрос № 1.
Выберите верную формулу для нахождения длины окружности.
\(L = 2\pi R^2\)
\(L = \pi R\)
\(L = 2\pi R\)
\(L = \pi R^2\)
Следующий
Вопрос № 2.
Что находится в треугольнике по данной формуле: \(X = \frac 2a \sqrt{p(p-a)(p-b)(p-c)}\) ?
Медиана
Ничего из перечисленного
Высота
Биссектриса
Следующий
Вопрос № 3.
Что находит данная формула в треугольнике: \(a = c \sin\alpha = c \cos\beta = b \text{ tg }\alpha\) ?
Катет прямоугольного треугольника
Сторону равнобедренного треугольника
Гипотенузу прямоугольного треугольника
Сторону произвольного треугольника
Следующий
Вопрос № 4.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
Только A
Только C
Только B
A и B
Следующий
Вопрос № 5.
Что потребуется для нахождения площади произвольного четырехугольника?
Длины диагоналий и угол можду ними
Длины двух смежных сторон
Смежные стороны и угол между ними
Длины всех сторон
Следующий
Вопрос № 6.
Выберите формулу, по которой можно найти радиус вписанной окружности для равностороннего треугольника.
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a + b - c}2\)
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}2\)
Следующий
Вопрос № 7.
Выберите формулу, по которой можно найти радиус вписанной окружности для произвольного треугольника.
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac Sp\)
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}6\)
Следующий
Вопрос № 8.
Что можно найти по данной формуле: \(S = ah_a\)?
Площадь ромба и параллелограмма
Площадь параллелограмма
Площадь ромба
Площадь произвольного четырехугольника
Следующий
Вопрос № 9.
Есть ли взаимосвязь между радиусом вписанной окружности r и площадью S произвольного треугольника?
\(r = 2S\)
Нет зависимости
\(S = rp\)
\(S = 2p\)
Следующий
Вопрос № 10.
Какая формула используется только для нахождения площади равностороннего треугольника?
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {ab}2\)
\(S = \frac {a^2\sqrt{3}}3\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
1
2
3
4
5
6
7
8
9
10
Нужно ответить на все вопросы
Наверх