Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 7 класс
00:00:00
Вопрос № 1.
Что можно найти по данной формуле: \(S = ah_a\)?
Площадь параллелограмма
Площадь произвольного четырехугольника
Площадь ромба
Площадь ромба и параллелограмма
Следующий
Вопрос № 2.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\sin\phi\) ?
Площадь прямоугольника
Площадь ромба
Площадь параллелограмма
Все перечисленное
Следующий
Вопрос № 3.
Выберите неверный признак подобия треугольников.
Все признаки верные
Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.
Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.
Если две стороны одного треугольника пропорциональны двум сторонам другого, то треугольники подобны.
Следующий
Вопрос № 4.
Выберите неверное свойство параллелограмма.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон
Все утверждения верны
Противоположные стороны параллелограмма равны
Сумма противоположных углов равна 180 градусов
Следующий
Вопрос № 5.
Что можно вычислить для прямоугольного треугольника, если известны гипотенуза и высота, проведенная к ней?
Только радиус вписанной окружности
Площадь и радиус вписанной окружности
Площадь и радиус описанной окружности
Только площадь
Только радиус описанной окружности
Следующий
Вопрос № 6.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\)?
Площадь ромба и квадрата
Площадь ромба и параллелограмма
Площадь произвольного четырехугольника
Площадь квадрата
Площадь параллелограмма
Следующий
Вопрос № 7.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \frac {b c \sin\alpha}2\)
\(S = \frac {ab}2\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {a^2\sqrt{3}}4\)
Следующий
Вопрос № 8.
Можно ли посчитать число диагоналей произвольного многоугольника?
Да, по формуле \(N = \frac{n (n - 3)}3\)
Нет
Да, по формуле \(N = \frac{n (n - 3)}2\)
Следующий
Вопрос № 9.
Выберите неверную формулировку свойства вписанных углов.
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу
Вписанный угол равен угловой мере дуги, на которую он опирается
Все вписанные углы опирающиеся на общую дугу равны между собой
Величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу
Следующий
Вопрос № 10.
Какая формула используется только для нахождения площади равностороннего треугольника?
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {a^2\sqrt{3}}3\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {ab}2\)
1
2
3
4
5
6
7
8
9
10
Нужно ответить на все вопросы
Наверх