Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 7 класс
00:00:00
Вопрос № 1.
Что находится в треугольнике по данной формуле: \(X = \frac {\sqrt {cb(b + c + a)(b + c - a)}}{c + b}\) ?
Биссектриса
Ничего из перечисленного
Высота
Медиана
Следующий
Вопрос № 2.
Выберите верную формулировку теоремы синусов.
\(\frac {a}{\sin\alpha} + \frac {b}{\sin\beta} + \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma}\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2r\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2R\)
Следующий
Вопрос № 3.
Выберите формулу, по которой можно найти радиус вписанной окружности для равностороннего треугольника.
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}6\)
Следующий
Вопрос № 4.
Выберите верную формулу для нахождения длины дуги окружности.
\(L = \frac{\pi R \alpha}{180}\)
\(L = \frac{\pi R^2 \alpha}{180}\)
\(L = \frac{\pi R^2 \alpha}{360}\)
\(L = \frac{\pi R \alpha}{360}\)
Следующий
Вопрос № 5.
Что находится в треугольнике по данной формуле: \(X = \frac 12 \sqrt{2(b^2 + c^2) - a^2}\) ?
Биссектриса
Высота
Ничего из перечисленного
Медиана
Следующий
Вопрос № 6.
Что можно найти по данной формуле: \(S = \frac 12 d_1d_2\)?
Площадь ромба и квадрата
Площадь ромба и параллелограмма
Площадь произвольного четырехугольника
Площадь квадрата
Площадь параллелограмма
Следующий
Вопрос № 7.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = \frac r2\)
\(R = 2r\)
\(R = 3r\)
\(R = \frac r3\)
Следующий
Вопрос № 8.
Что можно найти по данной формуле: \(S = ah_a\)?
Площадь параллелограмма
Площадь ромба
Площадь произвольного четырехугольника
Площадь ромба и параллелограмма
Следующий
Вопрос № 9.
Выберите верную формулу для нахождения площади кругового сегмента.
\(S = \frac{R^2}{2}\)
\(S = \frac{R}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \cos\alpha)\)
Следующий
Вопрос № 10.
По какой формуле можно вычислить площадь правильного многоугольника?
\(S = (r^2 n) \text{ ctg }\pi\)
\(S = \frac n3 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = \frac n4 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = \frac n2 R^2 \sin{\frac{\pi}n}\)
1
2
3
4
5
6
7
8
9
10
Нужно ответить на все вопросы
Наверх