Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 7 класс
00:00:00
Вопрос № 1.
Можно ли посчитать число диагоналей произвольного многоугольника?
Нет
Да, по формуле \(N = \frac{n (n - 3)}2\)
Да, по формуле \(N = \frac{n (n - 3)}3\)
Следующий
Вопрос № 2.
По какой формуле можно вычислить площадь правильного многоугольника?
\(S = \frac n3 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = \frac n4 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = \frac n2 R^2 \sin{\frac{\pi}n}\)
\(S = (r^2 n) \text{ ctg }\pi\)
Следующий
Вопрос № 3.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = 3r\)
\(R = \frac r3\)
\(R = 2r\)
\(R = \frac r2\)
Следующий
Вопрос № 4.
Выберите верную формулу для нахождения площади кольца.
\(S = \frac{\pi}2 (R^2 - r^2)\)
\(S = (R^2 - r^2\)
\(S = \pi (R - r)\)
\(S = \pi (R^2 - r^2)\)
Следующий
Вопрос № 5.
Выберите верную формулу для нахождения длины окружности.
\(L = \pi R\)
\(L = 2\pi R^2\)
\(L = 2\pi R\)
\(L = \pi R^2\)
Следующий
Вопрос № 6.
В каком треугольнике точка пересечения высот находится внутри треугольника?
В остроугольном
В тупоугольном
В произвольном
В прямом
Следующий
Вопрос № 7.
Выберите верную формулу для нахождения площади сектора.
\(S = \frac{\pi R^2 \alpha}{180}\)
\(S = \frac{\pi R \alpha}{180}\)
\(S = \frac{\pi R \alpha}{360}\)
\(S = \frac{\pi R^2 \alpha}{360}\)
Следующий
Вопрос № 8.
Выберите формулу, по которой можно найти радиус вписанной окружности для равностороннего треугольника.
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a\sqrt{3}}2\)
\(r = \frac {a + b - c}2\)
Следующий
Вопрос № 9.
Что такое средняя линия трапеции?
Отрезок, параллельный основаниям
Отрезок, соединяющий середины оснований
Отрезок, соединяющий середины противоположных сторон
Отрезок, соединяющий середины боковых сторон
Следующий
Вопрос № 10.
По какой формуле можно найти площадь трапеции?
\[A: S = hl\]
\[B: S = \frac {ab}2l\]
\[C: S = \frac {ab}2\]
Только B
Только A
Только C
A и B
1
2
3
4
5
6
7
8
9
10
Нужно ответить на все вопросы
Наверх