Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 7 класс
00:00:00
Вопрос № 1.
Что такое средняя линия трапеции?
Отрезок, соединяющий середины противоположных сторон
Отрезок, соединяющий середины оснований
Отрезок, параллельный основаниям
Отрезок, соединяющий середины боковых сторон
Следующий
Вопрос № 2.
Выберите формулу, по которой можно найти радиус вписанной окружности для прямоугольного треугольника.
\(r = \frac {abc}{4S}\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}2\)
Следующий
Вопрос № 3.
Можно ли посчитать число диагоналей произвольного многоугольника?
Нет
Да, по формуле \(N = \frac{n (n - 3)}2\)
Да, по формуле \(N = \frac{n (n - 3)}3\)
Следующий
Вопрос № 4.
По какой формуле можно вычислить площадь правильного многоугольника?
\(S = \frac n4 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = \frac n3 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = (r^2 n) \text{ ctg }\pi\)
\(S = \frac n2 R^2 \sin{\frac{\pi}n}\)
Следующий
Вопрос № 5.
Выберите верную формулу для нахождения площади кругового сегмента.
\(S = \frac{R}{2}(\alpha - \sin\alpha)\)
\(S = \frac{R^2}{2}\)
\(S = \frac{R^2}{2}(\alpha - \cos\alpha)\)
\(S = \frac{R^2}{2}(\alpha - \sin\alpha)\)
Следующий
Вопрос № 6.
Выберите рисунок, на котором изображено свойство касательных.
Следующий
Вопрос № 7.
Выберите верную формулу для нахождения длины дуги окружности.
\(L = \frac{\pi R^2 \alpha}{180}\)
\(L = \frac{\pi R \alpha}{180}\)
\(L = \frac{\pi R^2 \alpha}{360}\)
\(L = \frac{\pi R \alpha}{360}\)
Следующий
Вопрос № 8.
По какой формуле можно найти площадь произвольного треугольника, если известны длины его сторон?
\(S = \frac {ab}2\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {b c \sin\alpha}2\)
Следующий
Вопрос № 9.
Выберите верную формулировку теоремы синусов.
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma} = 2r\)
\(\frac {a}{\sin\alpha} + \frac {b}{\sin\beta} + \frac {c}{\sin\gamma} = 2R\)
\(\frac {a}{\sin\alpha} = \frac {b}{\sin\beta} = \frac {c}{\sin\gamma}\)
Следующий
Вопрос № 10.
Есть ли взаимосвязь между средней линией трапеции
l
и ее площадью
S
?
\(l = \frac S2\)
Нет зависимости
\(S = 2lh\)
\(S = lh\)
1
2
3
4
5
6
7
8
9
10
Нужно ответить на все вопросы
Наверх