Регистрация
/
Восстановить пароль
Войти
☰
Обучение
Конкурсы
Олимпиады
Рейтинг
Итоги
Личный кабинет
Олимпиада по геометрии «Основы планиметрии»
Возрастная категория: 7 класс
00:00:00
Вопрос № 1.
Что такое средняя линия трапеции?
Отрезок, параллельный основаниям
Отрезок, соединяющий середины противоположных сторон
Отрезок, соединяющий середины оснований
Отрезок, соединяющий середины боковых сторон
Следующий
Вопрос № 2.
Как соотносятся радиус r вписанной окружности и радиус R описанной окружности равностороннего треугольника?
\(R = 3r\)
\(R = \frac r3\)
\(R = \frac r2\)
\(R = 2r\)
Следующий
Вопрос № 3.
Выберите неверную формулировку свойства вписанных углов.
Все вписанные углы опирающиеся на общую дугу равны между собой
Величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу
Вписанный угол равен угловой мере дуги, на которую он опирается
Следующий
Вопрос № 4.
По какой формуле можно вычислить площадь правильного многоугольника?
\(S = (r^2 n) \text{ ctg }\pi\)
\(S = \frac n4 a^2 \text{ ctg }{\frac{\pi}n}\)
\(S = \frac n2 R^2 \sin{\frac{\pi}n}\)
\(S = \frac n3 a^2 \text{ ctg }{\frac{\pi}n}\)
Следующий
Вопрос № 5.
Что находит данная формула в треугольнике: \(a = c \sin\alpha = c \cos\beta = b \text{ tg }\alpha\) ?
Сторону равнобедренного треугольника
Сторону произвольного треугольника
Гипотенузу прямоугольного треугольника
Катет прямоугольного треугольника
Следующий
Вопрос № 6.
Выберите формулу, по которой можно найти радиус вписанной окружности для произвольного треугольника.
\(r = \frac {a + b - c}2\)
\(r = \frac {a\sqrt{3}}6\)
\(r = \frac Sp\)
\(r = \frac {a\sqrt{3}}2\)
Следующий
Вопрос № 7.
В каком треугольнике точка пересечения высот находится внутри треугольника?
В остроугольном
В произвольном
В прямом
В тупоугольном
Следующий
Вопрос № 8.
Выберите верную формулу для нахождения длины окружности.
\(L = 2\pi R^2\)
\(L = \pi R\)
\(L = 2\pi R\)
\(L = \pi R^2\)
Следующий
Вопрос № 9.
Какая формула используется только для нахождения площади равностороннего треугольника?
\(S = \frac {a^2\sqrt{3}}3\)
\(S = \frac {a^2\sqrt{3}}4\)
\(S = \frac {ab}2\)
\(S = \sqrt{p(p-a)(p-b)(p-c)}\)
Следующий
Вопрос № 10.
Выберите верную формулировку свойства высот в треугольнике.
\(\frac {h_a}{h_b} = \frac {a}{b}\)
\(\frac {h_a}{a} = \frac {h_b}{b}\)
\(\frac {h_a}{b} = \frac {h_b}{a}\)
1
2
3
4
5
6
7
8
9
10
Нужно ответить на все вопросы
Наверх